4. RELATIONS AND
FUNCTIONS

84.1. Relations

Having defined relations and functions as certain
types of statement we redefine them within the class of sets.
The ones built up from statements of the form x € y we will
now call ‘generalized’ relations and functions.

& &

A relation R between sets X and Y is a subset of X x Y.
We denote the statement that (X, y) € R by xRy and denote
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the fact that R is a relation between X and Y by R:X—-Y.
A relation between a set X and itself is called a relation on
X.

For example the relation m < n on N, the set of
natural numbers, would be considered to be the set of all
pairs (m, n) where m < n. Of course you must be aware that,
although we are talking about natural numbers and their
ordering, by way of an example, we have yet to define these
properly.

This is the way most relations are stored in a
computer database. The relation XEy, where X is a student
and y is a course in some university, might be defined to
mean that x is enrolled in course y. There is no algorithm
for deciding whether a given student is enrolled in a certain
course. Instead this relation may be stored as an array of
ordered pairs (student, course).

We define multiplication of relations as follows. If
R:X—Y and S:Y—Z are relations then RS:X—Z is defined
by x(RS)z if there exists y € Y such that xRy and ySz. In
symbols this would be x(RS)z <> y[xRy A ySz].

Example 1: Suppose a = Alice, b = Bill and ¢ = Catherine
and suppose that Bill and Catherine are Mary’s two
children. If P is the relation ‘parent of” and S is the relation
‘sibling of” then we would have aPb and aPc and bSc and
cSh.
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The relation SP is the relation ‘aunt or uncle of’. What
about PS? A parent of my sibling would be my sibling. At
least that would be the case if there were no step mothers,
step fathers or step children. So is PS = P? Well no, if | am
an only child, my father is one of my parents but he would
not be a parent of my sibling. As sets of ordered pairs PS
would be a subset of P.

The inverse of a relation R: X—Y is R™1:Y—X defined by
xRty if and only if yRx.
In other words, R™* = {(y,x) | (x,¥) € R}.

Example 2: If P and S are as in Example 1 then P~ is the
relation of being ‘child of> while S = S. If Ron is my father
then [ am a child of Ron’s. And I am a sibling to any of my
siblings.

A relation R on a set X is:

o reflexive if VX[xRx],

e symmetric if YXVy[xRy — yRX],

e transitive if VxVyVz[xRy A yRz — xRz].

e an equivalence relation if it is reflexive, symmetric and
transitive.

If R is an equivalence relation, the equivalence class
containing x is [X]r = {y | XRy}. Often we leave out the
subscript and simply write [x]. If y €[x] then [y] = [X].
Distinct equivalence classes are disjoint since z € [x] N [y]
implies that xRz and yRz and together these imply xRz.
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Hence an equivalence relation on a set partitions the set into
disjoint equivalence classes.

Jj EQUIVALENCE

Example 3: The relation P in Examples 1 and 2 is neither
reflexive nor symmetric. Nobody can be their own father
(reflexive) nor am I my father’s father (symmetric). And
clearly P isn’t transitive.

The normal use of the word ‘sibling’ precludes
anyone from being their own sibling, so S is not reflexive.
But, as we have seen, S is symmetric. Is S transitive? Is my
sibling’s sibling my own sibling? Not quite. If b, ¢ are Bill
and Catherine in Example 1, then bSc and cSh. If S was
transitive it would follow that bSb. But Bill is not his own
sibling. Remember that in the definition of the transitive
property nothing was said about the x, y and z being
distinct.
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Example 4: Show that the relation xRy define on the set of
integers by xRy if x —y is a multiple of 7, is an equivalence
relation.

Solution: Reflexive: For all x, x —x =0, which is a multiple
of seven.

Symmetric: Suppose xRy. Then x — vy is a multiple of 7.
Hence y — x is a multiple of 7 and so yRxX.

Transitive: Suppose xRy and yRz.

Then x —y and y — z are multiples of 7.

Hence x—z = (x—Y) + (y — z) is a multiple of 7 and so xRz.
So R is an equivalence relation.

The set {..., — 12, — 5, 2,9, ...} is an example of an
equivalence class for this equivalence relation since it
consists of all numbers that are equivalent to 2.

A relation R on a set X is regular if Vx3y[xRy].

Example 5: If R is the relation x <y on N then R is regular.
(n<n+1),Butif Risx>ythenitis not regular because 0
is not greater than any natural number.

Theorem 1: If R is a regular relation then it is an
equivalence relation if and only if

R1=Rand R?=R.
Proof: The statement R = R is equivalent to the
symmetric property and R? < R is equivalent to the
transitive property.
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Suppose that R is an equivalence relation and let x
X. Suppose (x,y) € R, in other words, xRy. Then, since XRx
and xRy, it follows that xR?y and so (x, y) € R2.
Hence R?=R.

Suppose now that R is a regular relation and that
R1=Rand R?=R,
Then R is clearly symmetric and transitive. All that remains
to show is that R is reflexive.
Let x € X. Since R is regular xRy for somey € Y.
Since R is symmetric yRx and since R is transitive xRx and
so R is reflexive.

Example 6: There are 7 equivalence classes in example 4.
For example [3] ={..., -18, -11, -4, 3, 10, 17, 24, ...}

84.2. Functions

Most of the material in the next couple of paragraphs
should be well known to you and so | will be brief.

A function F:X—Y is a relation between X and Y
such that: VxVyVz[xFy A xFz — y = z]. The unique y is
denoted by F(x). As a relation, it is a subset of X x Y.

If F:X=Y is a function, X is called the domain and Y is
the codomain.

The image (range) of Fisim F = {y | Ix[y = F(xX)]}.
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The function F:X—Y is 1-1 (injective) if:
VXVY[F(X) = F(y) > x=Y].

It is onto (surjective) ifimF =Y.

A function is a bijection if it is 1-1 and onto.

A function F is invertible if F::Y—X is a function and so
F: X=Y is invertible if and only if it is a bijection.

A permutation on a set X is a bijection F: X—X. The
inverse of a permutation is a permutation and the product
of two permutations is a permutation.

Clearly if F, G are 1-1 then FG is 1-1. If F, G are onto then
FG is onto.

If FX > Y and Z < X then FIZ = F n (Z x Y) (the
restriction of F to Z).

The product of two functions is defined as for relations. If
F:X—Y and G:Y—Z then the product FG:X—Z is defined
by: (FG)(x) = G(F(x)). This is the same as if we considered
them as relations.

We denote the set of all functions F:Y — X by X,

This notation is motivated by the fact that if X and Y are
finite sets with sizes m and n respectively then XY has size
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m". This is because there are m choices for F(y) for each of
thenelementsy € Y.

Theorem 2: If X, Y are sets then so is Y*.

Proof: A typical element of XY is a function F: X—Y.

It is a set of ordered pairs of the form (x, F(x)) for some

X e X.

But (x, F(x)) = {{x}, {x, F(x)}}.

Now x € X and F(x) € Y, so both belongto X U Y.

Hence {x} and {x, F(x)} are subsets of X U Y, so they’re
both elements of (X U Y).

So far, all of these are sets by various ZF axioms.

Hence (x, y) = {{x}, {x, F(x)}}

and so is a subset of (X UY).

Therefore (x, F(X)) € p3(XUY).

Now such an F is a set of these so F is a subset of

©2(X U Y) and hence is an element of @3(X U Y).
Finally, XY is a set of these functions and so is a subset of
@3(X U Y). Thus X¥ € p*4X U Y). By the axioms of
unions and power sets o *(X U Y) is aset and by the Axiom
of Specification we can prove that X is a set.

Clearly @* = @ if X = & since there are no functions from
a non-empty set to the empty set. But X? = {7} for all X.
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84.3. n-Tuples, Sequences and Families

We have yet to define numbers. That will have to
wait until the next chapter. Here we will consider certain
mathematical objects that we use in mathematics, such as
n-tuples, sequences and matrices.

We have already seen how to view an ordered pair
as a set: (a, b) = {{a}, {a, b}}. It would be possible to
extend this to an ordered triple, or a general n-tuple, but it’s
more convenient to do this by means of functions from sets
of natural numbers. Never mind that we don’t have any
such objects at this stage.

We denote the set {1, 2, ..., n} by [n].

We define an n-tuple as a function, x: [n] —» S, for some
set S. We usually denote x(k) by xk and the n-tuple itself as
(X1, X2, ..., Xk). We call [n] the indexing set. Since functions
from sets to sets are sets then n-tuples are sets. And the
class of all n-tuples on a set S is simply SI" and so, by
Theorem 2, it is itself a set. You may have noticed that
usually SI"is usually written as S x S x ... x S (n factors),
or more simply as S".

Is the ordered pair (a, b) also a 2-tuple? Well, yes
and no. In the course of doing ordinary mathematics we
would treat them as the same thing, and that’s fine. But we
defined ordered pairs separately to n-tuples and, if we drill
down to their nature as sets, they will be different.
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The ordered pair (a, b) was defined as:
{{a}, {a, b}}.
But the 2-tuple (a, b) is the function F:{1, 2}—S where F(1)
=aand F(2) = b. Now viewing this function as a relation it
would be {(1, a), (2, b)} and writing each of these ordered
pairs as a set, we would have:

(@ b) ={{{1}, {1, a}}, {{2}, {2, b}}}.

Why didn’t we define n-tuples first and then
automatically we would have had ordered pairs as 2-tuples.
Can you see why this wouldn’t work? Our definition of n-
tuples was in terms of functions and functions were defined
in terms of ordered pairs. So we were forced to define
ordered pairs first, before n-tuples!

But the distinction between an ordered pair and a 2-
tuple is purely a technical one in the context of setting
mathematics on the foundations of set theory. In everyday
mathematics the distinction is artificial and is ignored.

Often we have sequences where the components
come from different sets. The Cartesian product R x S x T
consists of 3-tuples (x,y, z) wherex e R,y e Sandz € T.
We would consider R x S x T as a subset of (R U S U T)3,

An m x n matrix over a set S can be considered as a
function a from [m] x [n] to S, where a(i, j) is usually
written as aij.
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When the number of components is infinite we use

different terminology. We don’t refer to an co-tuple, but
rather as an infinite sequence. The infinite sequence:
X1, X2, ... would be defined as a function from {1, 2, ...} to
a set S. Often it’s convenient to begin the sequence with an
Xo (it makes no difference in practice) and then we can say
that the infinite sequence Xo, X1, Xz, ... is simply a function
from N, the set of natural numbers, to the set S.

But we are ‘jumping the gun’ a little here because we
haven’t yet defined the natural numbers. We’ll do that
shortly.

Occasionally we need something bigger than a
sequence. If I and S are sets we define a family (Fi)ic) to be
a function F:1—-S. The set | is called the indexing set. Here
Fi is an alternative way of writing F(i).

If1={1,2,...,n}this is simply an n-tuple.
If | = N then it’s an infinite sequence. But we can consider
more general families.

Example 7: In topology we consider systems of
neighbourhoods of points. If a € R?, considered as a point
in the plane, and r > 0 we define the r-neighbourhood to be
Nr(a) = {x | |x — a] < r}, an open circle of radius r centred
at a. These form a family (Nr(a))rer+ Where R* is the
indexing set.
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With all our work so far we still cannot even talk
about kindergarten arithmetic. Counting 1, 2, 3, ... exposes
7 the young child to a very abstract
O™ concept. What exactly is the number 3°?
A We point to a picture of three ducks and
~ (> apicture of three balls and eventually the
) child manages to extract the ‘three-ness’.
- == But even mature adults would generally
be unable to give a satisfactory

definition of ‘three’. Fortunately we R ;
get along in life without having #%. .
formal definitions. How would you ey

%

define a cat, for example?

But we’ve undertaken the job
of establishing mathematics on a rigorous foundation, so
we’re going to have to define numbers precisely. That’s our
very next task.
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