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4. RELATIONS AND 

FUNCTIONS 
 

§4.1. Relations 
Having defined relations and functions as certain 

types of statement we redefine them within the class of sets. 

The ones built up from statements of the form x  y we will 

now call ‘generalized’ relations and functions. 

 

A relation R between sets X and Y is a subset of X  Y. 

We denote the statement that (x, y)  R by xRy and denote 
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the fact that R is a relation between X and Y by R:X→Y. 

A relation between a set X and itself is called a relation on 

X. 

 

 For example the relation m < n on ℕ, the set of 

natural numbers, would be considered to be the set of all 

pairs (m, n) where m < n. Of course you must be aware that, 

although we are talking about natural numbers and their 

ordering, by way of an example, we have yet to define these 

properly. 

This is the way most relations are stored in a 

computer database. The relation xEy, where x is a student 

and y is a course in some university, might be defined to 

mean that x is enrolled in course y. There is no algorithm 

for deciding whether a given student is enrolled in a certain 

course. Instead this relation may be stored as an array of 

ordered pairs (student, course). 

  

We define multiplication of relations as follows. If 

R:X→Y and S:Y→Z are relations then RS:X→Z is defined 

by x(RS)z if there exists y  Y such that xRy and ySz. In 

symbols this would be x(RS)z  y[xRy  ySz]. 

 

Example 1: Suppose a = Alice, b = Bill and c = Catherine 

and suppose that Bill and Catherine are Mary’s two 

children. If P is the relation ‘parent of’ and S is the relation 

‘sibling of’ then we would have aPb and aPc and bSc and 

cSb. 

 



 59 

The relation SP is the relation ‘aunt or uncle of’. What 

about PS? A parent of my sibling would be my sibling. At 

least that would be the case if there were no step mothers, 

step fathers or step children. So is PS = P? Well no, if I am 

an only child, my father is one of my parents but he would 

not be a parent of my sibling. As sets of ordered pairs PS 

would be a subset of P. 

 

The inverse of a relation R: X→Y is R−1:Y→X defined by 

xR−1y if and only if yRx. 

In other words, R
−1 = {(y, x) | (x, y)  R}. 

 

Example 2: If P and S are as in Example 1 then P−1 is the 

relation of being ‘child of’ while S−1 = S. If Ron is my father 

then I am a child of Ron’s. And I am a sibling to any of my 

siblings. 

 

A relation R on a set X is: 

• reflexive if x[xRx], 

• symmetric if xy[xRy → yRx], 

• transitive if xyz[xRy  yRz → xRz]. 

• an equivalence relation if it is reflexive, symmetric and 

transitive. 

 

If R is an equivalence relation, the equivalence class 

containing x is [x]R = {y | xRy}. Often we leave out the 

subscript and simply write [x]. If y [x] then [y] = [x]. 

Distinct equivalence classes are disjoint since z  [x]  [y] 

implies that xRz and yRz and together these imply xRz. 
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Hence an equivalence relation on a set partitions the set into 

disjoint equivalence classes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 3: The relation P in Examples 1 and 2 is neither 

reflexive nor symmetric. Nobody can be their own father 

(reflexive) nor am I my father’s father (symmetric). And 

clearly P isn’t transitive. 

 The normal use of the word ‘sibling’ precludes 

anyone from being their own sibling, so S is not reflexive. 

But, as we have seen, S is symmetric. Is S transitive? Is my 

sibling’s sibling my own sibling? Not quite. If b, c are Bill 

and Catherine in Example 1, then bSc and cSb. If S was 

transitive it would follow that bSb. But Bill is not his own 

sibling. Remember that in the definition of the transitive 

property nothing was said about the x, y and z being 

distinct. 

 

EQUIVALENCE 

CLASS 
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Example 4: Show that the relation xRy define on the set of 

integers by xRy if x − y is a multiple of 7, is an equivalence 

relation. 

Solution: Reflexive: For all x, x − x = 0, which is a multiple 

of seven. 

Symmetric: Suppose xRy.  Then x − y is a multiple of 7. 

Hence y − x is a multiple of 7 and so yRx. 

Transitive: Suppose xRy and yRz. 

Then x − y and y − z are multiples of 7. 

Hence x − z = (x − y) + (y − z) is a multiple of 7 and so xRz. 

So R is an equivalence relation. 

 

The set {…, − 12, − 5, 2, 9, …} is an example of an 

equivalence class for this equivalence relation since it 

consists of all numbers that are equivalent to 2. 

 

A relation R on a set X is regular if xy[xRy]. 

 

Example 5: If R is the relation x < y on ℕ then R is regular. 

(n < n + 1), But if R is x > y then it is not regular because 0 

is not greater than any natural number. 

 

Theorem 1: If R is a regular relation then it is an 

equivalence relation if and only if 

R−1 = R and R2 = R. 

Proof: The statement R−1 = R is equivalent to the 

symmetric property and R2  R is equivalent to the 

transitive property. 
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Suppose that R is an equivalence relation and let x  

X. Suppose (x, y)  R, in other words, xRy. Then, since xRx 

and xRy, it follows that xR2y and so (x, y)  R2. 

Hence R2 = R. 

 

Suppose now that R is a regular relation and that 

R−1 = R and R2 = R. 

Then R is clearly symmetric and transitive. All that remains 

to show is that R is reflexive. 

Let x  X. Since R is regular xRy for some y  Y. 

Since R is symmetric yRx and since R is transitive xRx and 

so R is reflexive. 

 

Example 6: There are 7 equivalence classes in example 4. 

For example [3] = {..., −18, −11, −4, 3, 10, 17, 24, ...}  

 

§4.2. Functions 
Most of the material in the next couple of paragraphs 

should be well known to you and so I will be brief. 

 

A function F:X→Y is a relation between X and Y 

such that: xyz[xFy  xFz → y = z]. The unique y is 

denoted by F(x). As a relation, it is a subset of X  Y. 

 

If F:X→Y is a function, X is called the domain and Y is 

the codomain. 

 

The image (range) of F is im F = {y | x[y = F(x)]}. 
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The function F:X→Y is 1-1 (injective) if: 

xy[F(x) = F(y) → x = y]. 

 

It is onto (surjective) if im F = Y. 

 

A function is a bijection if it is 1-1 and onto. 

 

A function F is invertible if F
−1

:Y→X is a function and so 

F: X→Y is invertible if and only if it is a bijection. 

 

A permutation on a set X is a bijection F: X→X. The 

inverse of a permutation is a permutation and the product 

of two permutations is a permutation. 

 

Clearly if F, G are 1-1 then FG is 1-1. If F, G are onto then 

FG is onto. 

 

If F:X → Y and Z  X then F|Z = F  (Z  Y) (the 

restriction of F to Z). 

 

The product of two functions is defined as for relations. If 

F:X→Y and G:Y→Z then the product FG:X→Z is defined 

by: (FG)(x) = G(F(x)). This is the same as if we considered 

them as relations. 

 

We denote the set of all functions F:Y → X by XY. 

This notation is motivated by the fact that if X and Y are 

finite sets with sizes m and n respectively then XY has size 
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mn. This is because there are m choices for F(y) for each of 

the n elements y  Y. 

 

Theorem 2: If X, Y are sets then so is YX. 

Proof: A typical element of XY is a function F: X→Y. 

It is a set of ordered pairs of the form (x, F(x)) for some 

x  X. 

But (x, F(x)) = {{x}, {x, F(x)}}. 

Now x  X and F(x)  Y, so both belong to X  Y. 

Hence {x} and {x, F(x)} are subsets of X  Y, so they’re 

both elements of (X  Y). 

So far, all of these are sets by various ZF axioms. 

Hence (x, y) = {{x}, {x, F(x)}} 

and so is a subset of (X  Y). 

Therefore  (x, F(x))  2(X  Y). 

Now such an F is a set of these so F is a subset of 

2(X  Y) and hence is an element of 3(X  Y). 

Finally, XY is a set of these functions and so is a subset of 

3(X  Y). Thus XY  4(X  Y). By the axioms of 

unions and power sets 4(X  Y) is a set and by the Axiom 

of Specification we can prove that XY is a set. 

 

Clearly X =  if X   since there are no functions from 

a non-empty set to the empty set. But X = {} for all X. 
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§4.3. n-Tuples, Sequences and Families 
We have yet to define numbers. That will have to 

wait until the next chapter. Here we will consider certain 

mathematical objects that we use in mathematics, such as 

n-tuples, sequences and matrices. 

We have already seen how to view an ordered pair 

as a set: (a, b) = {{a}, {a, b}}. It would be possible to 

extend this to an ordered triple, or a general n-tuple, but it’s 

more convenient to do this by means of functions from sets 

of natural numbers. Never mind that we don’t have any 

such objects at this stage. 

 

We denote the set {1, 2, …, n} by [n]. 

We define an n-tuple as a function, x: [n] → S, for some 

set S. We usually denote x(k) by xk and the n-tuple itself as 

(x1, x2, …, xk). We call [n] the indexing set. Since functions 

from sets to sets are sets then n-tuples are sets. And the 

class of all n-tuples on a set S is simply S[n] and so, by 

Theorem 2, it is itself a set. You may have noticed that 

usually S[n] is usually written as S  S  …  S (n factors), 

or more simply as Sn. 

 

Is the ordered pair (a, b) also a 2-tuple? Well, yes 

and no. In the course of doing ordinary mathematics we 

would treat them as the same thing, and that’s fine. But we 

defined ordered pairs separately to n-tuples and, if we drill 

down to their nature as sets, they will be different. 
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The ordered pair (a, b) was defined as: 

{{a}, {a, b}}. 

But the 2-tuple (a, b) is the function F:{1, 2}→S where F(1) 

= a and F(2) = b. Now viewing this function as a relation it 

would be {(1, a), (2, b)} and writing each of these ordered 

pairs as a set, we would have: 

(a, b) = {{{1}, {1, a}}, {{2}, {2, b}}}. 

 

Why didn’t we define n-tuples first and then 

automatically we would have had ordered pairs as 2-tuples. 

Can you see why this wouldn’t work? Our definition of n-

tuples was in terms of functions and functions were defined 

in terms of ordered pairs. So we were forced to define 

ordered pairs first, before n-tuples! 

 

 But the distinction between an ordered pair and a 2-

tuple is purely a technical one in the context of setting 

mathematics on the foundations of set theory. In everyday 

mathematics the distinction is artificial and is ignored. 

Often we have sequences where the components 

come from different sets. The Cartesian product R  S  T 

consists of 3-tuples (x, y, z) where x  R, y  S and z  T. 

We would consider R  S  T as a subset of (R  S  T)3. 

 

 An m  n matrix over a set S can be considered as a 

function a from [m]  [n] to S, where a(i, j) is usually 

written as aij. 
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When the number of components is infinite we use 

different terminology. We don’t refer to an -tuple, but 

rather as an infinite sequence. The infinite sequence: 

x1, x2, … would be defined as a function from {1, 2, …} to 

a set S. Often it’s convenient to begin the sequence with an 

x0 (it makes no difference in practice) and then we can say 

that the infinite sequence x0, x1, x2, … is simply a function 

from ℕ, the set of natural numbers, to the set S. 

 

 But we are ‘jumping the gun’ a little here because we 

haven’t yet defined the natural numbers. We’ll do that 

shortly. 

  

 Occasionally we need something bigger than a 

sequence. If I and S are sets we define a family (Fi)iI to be 

a function F:I→S. The set I is called the indexing set. Here 

Fi is an alternative way of writing F(i). 

 

If I = {1, 2, …, n} this is simply an n-tuple. 

If I = ℕ then it’s an infinite sequence. But we can consider 

more general families. 

 

Example 7: In topology we consider systems of 

neighbourhoods of points. If a  ℝ2, considered as a point 

in the plane, and r > 0 we define the r-neighbourhood to be 

Nr(a) = {x | |x − a| < r}, an open circle of radius r centred 

at a. These form a family (Nr(a))rℝ+ where ℝ+ is the 

indexing set. 
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 With all our work so far we still cannot even talk 

about kindergarten arithmetic. Counting 1, 2, 3, … exposes 

the young child to a very abstract 

concept. What exactly is the number ‘3’? 

We point to a picture of three ducks and 

a picture of three balls and eventually the 

child manages to extract the ‘three-ness’. 

But even mature adults would generally 

be unable to give a satisfactory 

definition of ‘three’. Fortunately we 

get along in life without having 

formal definitions. How would you 

define a cat, for example? 

 But we’ve undertaken the job 

of establishing mathematics on a rigorous foundation, so 

we’re going to have to define numbers precisely. That’s our 

very next task.  

 


